Марганец






























































































































25
ХромМарганецЖелезо

Mn

Tc


Водород
Гелий
Литий
Бериллий
Бор
Углерод
Азот
Кислород
Фтор
Неон
Натрий
Магний
Алюминий
Кремний
Фосфор
Сера
Хлор
Аргон
Калий
Кальций
Скандий
Титан
Ванадий
Хром
Марганец
Железо
Кобальт
Никель
Медь
Цинк
Галлий
Германий
Мышьяк
Селен
Бром
Криптон
Рубидий
Стронций
Иттрий
Цирконий
Ниобий
Молибден
Технеций
Рутений
Родий
Палладий
Серебро
Кадмий
Индий
Олово
Сурьма
Теллур
Иод
Ксенон
Цезий
Барий
Лантан
Церий
Празеодим
Неодим
Прометий
Самарий
Европий
Гадолиний
Тербий
Диспрозий
Гольмий
Эрбий
Тулий
Иттербий
Лютеций
Гафний
Тантал
Вольфрам
Рений
Осмий
Иридий
Платина
Золото
Ртуть
Таллий
Свинец
Висмут
Полоний
Астат
Радон
Франций
Радий
Актиний
Торий
Протактиний
Уран
Нептуний
Плутоний
Америций
Кюрий
Берклий
Калифорний
Эйнштейний
Фермий
Менделевий
Нобелий
Лоуренсий
Резерфордий
Дубний
Сиборгий
Борий
Хассий
Мейтнерий
Дармштадтий
Рентгений
Коперниций
Нихоний
Флеровий
Московий
Ливерморий
Теннессин
Оганесон
Периодическая система элементов


25Mn

Cubic-body-centered.svg

Electron shell 025 Manganese.svg


Внешний вид простого вещества


Электролитический марганец
Твёрдый, хрупкий металл серебристо-белого цвета

Свойства атома
Название, символ, номер
Марганец / Manganum (Mn), 25

Атомная масса
(молярная масса)

54,938045 (5)[1] а. е. м. (г/моль)
Электронная конфигурация
[Ar] 3d5 4s2
Радиус атома
127 пм
Химические свойства
Ковалентный радиус
117 пм
Радиус иона
(+7e) 46 (+2e) 80 пм
Электроотрицательность
1,55 (шкала Полинга)
Электродный потенциал
-1,180 В
Степени окисления
7, 6, 5, 4, 3, 2, 1, 0

Энергия ионизации
(первый электрон)

 716,8 (7,43) кДж/моль (эВ)
Термодинамические свойства простого вещества

Плотность (при н. у.)

7,21 г/см³
Температура плавления
1 517 K
Температура кипения
2 235 K
Уд. теплота плавления
13,4 кДж/моль
Уд. теплота испарения
221 кДж/моль
Молярная теплоёмкость
26,3[2] Дж/(K·моль)
Молярный объём
7,35 см³/моль

Кристаллическая решётка простого вещества
Структура решётки
кубическая
Параметры решётки
8,890 Å
Температура Дебая
400 K
Прочие характеристики
Теплопроводность
(300 K) 6,87[3] Вт/(м·К)
Номер CAS
7439-96-5









25

Марганец



Mn

54,9380


3d54s2


Ма́рганец — элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 25. Обозначается символом Mn (лат. Manganum, ма́нганум, в составе формул по-русски читается как марганец, например, KMnO4 — калий марганец о четыре). Простое вещество марганец — металл серебристо-белого цвета. Наряду с железом и его сплавами относится к чёрным металлам. Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной кристаллической решёткой[2].





Содержание






  • 1 История открытия


  • 2 Распространённость в природе


    • 2.1 Минералы марганца




  • 3 Получение


  • 4 Физические свойства


  • 5 Химические свойства


  • 6 Изотопы


  • 7 Применение в промышленности


    • 7.1 Применение в металлургии


    • 7.2 Применение в химии




  • 8 Определение методами химического анализа


  • 9 Биологическая роль и содержание в живых организмах


  • 10 Токсичность


  • 11 Месторождение


  • 12 См. также


  • 13 Примечания


  • 14 Ссылки





История открытия |


Один из основных минералов марганца — пиролюзит — был известен в древности как чёрная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом чёрной магнезии, к которому магнит «равнодушен». В 1774 г. шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану, который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале XIX века для него было принято название «манганум» (от немецкого Manganerz — марганцевая руда).



Распространённость в природе |



Марганец — 14-й элемент по распространённости на Земле, а после железа — второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Весовое количество марганца увеличивается от кислых (600 г/т) к основным породам (2,2 кг/т). Сопутствует железу во многих его рудах, однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах, вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10−7—10−6%), а в глубоких местах океана его концентрация возрастает до 0,3 % вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO2·xH2O) и опускается в нижние слои океана, формируя так называемые железо-марганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди, никеля, кобальта). Такие конкреции могут стать в будущем источником марганца для промышленности.


В России является остродефицитным сырьём, известны месторождения: «Усинское» в Кемеровской области, «Полуночное» в Свердловской, «Порожинское» в Красноярском крае, «Южно-Хинганское» в Еврейской автономной области, «Рогачёво-Тайнинская» площадь и «Северо-Тайнинское» поле на Новой Земле.



Минералы марганца |




  • пиролюзит MnO2·xH2O, самый распространённый минерал (содержит 63,2 % марганца);


  • манганит (бурая марганцевая руда) MnO(OH) (62,5 % марганца);


  • браунит 3Mn2O3·MnSiO3 (69,5 % марганца);


  • гаусманит (MnIIMn2III)O4;


  • родохрозит (марганцевый шпат, малиновый шпат) MnCO3 (47,8 % марганца);


  • псиломелан mMnO • MnO2nH2O (45-60 % марганца);


  • пурпурит Mn3+[PO4], (36,65 % марганца).



Получение |



  • Алюминотермическим методом, восстанавливая оксид Mn2O3, образующийся при прокаливании пиролюзита:

4MnO2→2Mn2O3+O2{displaystyle {mathsf {4MnO_{2}rightarrow 2Mn_{2}O_{3}+O_{2}}}}

Mn2O3+2Al→2Mn+Al2O3{displaystyle {mathsf {Mn_{2}O_{3}+2Alrightarrow 2Mn+Al_{2}O_{3}}}}


  • Восстановлением железосодержащих оксидных руд марганца коксом. Этим способом в металлургии обычно получают ферромарганец (~80 % Mn).

  • Чистый металлический марганец получают электролизом.



Физические свойства |


Некоторые свойства приведены в таблице.
Другие свойства марганца:



  • Работа выхода электрона: 4,1 эВ

  • Коэффициент линейного температурного расширения: 0,000022 см/см/°C (при 0 °C)


  • Электропроводность: 0,00695⋅106 Ом−1·см−1


  • Теплопроводность: 0,0782 Вт/см·K

  • Энтальпия атомизации: 280,3 кДж/моль при 25 °C

  • Энтальпия плавления: 14,64 кДж/моль

  • Энтальпия испарения: 219,7 кДж/моль


  • Твёрдость

    • по шкале Бринелля: Мн/м²

    • по шкале Мооса: 4[4]



  • Давление паров: 121 Па при 1244 °C

  • Молярный объём: 7,35 см³/моль



Химические свойства |





















































































Стандартные окислительно-восстановительные потенциалы по отношению к водородному электроду
Окисленная форма Восстановленная форма Среда E0, В
Mn2+
Mn H+
−1,186
Mn3+
Mn2+
H+
+1,51
MnO2
Mn3+
H+
+0,95
MnO2
Mn2+
H+
+1,23
MnO2
Mn(OH)2
OH
−0,05
MnO42−
MnO2
H+
+2,26
MnO42−
MnO2
OH
+0,62
MnO4
MnO42−
OH
+0,56
MnO4
H2MnO4
H+
+1,22
MnO4
MnO2
H+
+1,69
MnO4
MnO2
OH
+0,60
MnO4
Mn2+
H+
+1,51




Диаграмма Пурбе для марганца


Характерные степени окисления марганца: 0, +2, +3, +4, +6, +7 (степени окисления +1, +5 малохарактерны).


При окислении на воздухе пассивируется. Порошкообразный марганец сгорает в кислороде:


Mn+O2→MnO2{displaystyle {mathsf {Mn+O_{2}rightarrow MnO_{2}}}}

Марганец при нагревании разлагает воду, вытесняя водород:


Mn+2H2O→otMnO2+H2↑{displaystyle {mathsf {Mn+2H_{2}O{xrightarrow[{}]{^{o}t}}MnO_{2}+H_{2}uparrow }}}

При этом слой образующегося гидроксида марганца замедляет реакцию.


Марганец поглощает водород, с повышением температуры его растворимость в марганце увеличивается. При температуре выше 1200 °C взаимодействует с азотом, образуя различные по составу нитриды.


Углерод реагирует с расплавленным марганцем, образуя карбиды Mn3C и другие. Образует также силициды, бориды, фосфиды.


C соляной и серной кислотами реагирует по уравнению:


Mn+2H+→Mn2++H2↑{displaystyle {mathsf {Mn+2H^{+}rightarrow Mn^{2+}+H_{2}uparrow }}}

С концентрированной серной кислотой реакция идёт по уравнению:


Mn+2H2SO4→MnSO4+SO2↑+2H2O{displaystyle {mathsf {Mn+2H_{2}SO_{4}rightarrow MnSO_{4}+SO_{2}uparrow +2H_{2}O}}}

С разбавленной азотной кислотой реакция идёт по уравнению:


3Mn+8HNO3→3Mn(NO3)2+2NO↑+4H2O{displaystyle {mathsf {3Mn+8HNO_{3}rightarrow 3Mn(NO_{3})_{2}+2NOuparrow +4H_{2}O}}}

В щелочном растворе марганец устойчив.


Марганец образует следующие оксиды: MnO, Mn2O3, MnO2, MnO3 (не выделен в свободном состоянии) и марганцевый ангидрид Mn2O7.


Mn2O7 в обычных условиях жидкое маслянистое вещество тёмно-зелёного цвета, очень неустойчивое; в смеси с концентрированной серной кислотой воспламеняет органические вещества. При 90 °C Mn2O7 разлагается со взрывом. Наиболее устойчивы оксиды Mn2O3 и MnO2, а также комбинированный оксид Mn3O4 (2MnO·MnO2, или соль Mn2MnO4).


При сплавлении оксида марганца (IV) (пиролюзит) со щелочами в присутствии кислорода образуются манганаты:


2MnO2+4KOH+O2→2K2MnO4+2H2O{displaystyle {mathsf {2MnO_{2}+4KOH+O_{2}rightarrow 2K_{2}MnO_{4}+2H_{2}O}}}

Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция:


3K2MnO4+3H2SO4→3K2SO4+2HMnO4+MnO(OH)2↓+H2O{displaystyle {mathsf {3K_{2}MnO_{4}+3H_{2}SO_{4}rightarrow 3K_{2}SO_{4}+2HMnO_{4}+MnO(OH)_{2}downarrow +H_{2}O}}}

Раствор окрашивается в малиновый цвет из-за появления аниона MnO4, и из него выпадает коричневый осадок оксида-гидроксида марганца (IV).


Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) — сильные окислители. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).


При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия):


2KMnO4→0tK2MnO4+MnO2+O2{displaystyle {mathsf {2KMnO_{4}{xrightarrow[{}]{^{0}t}}K_{2}MnO_{4}+MnO_{2}+O_{2}}}}

Под действием сильных окислителей ион Mn2+ переходит в ион MnO4:


2MnSO4+5PbO2+6HNO3→2HMnO4+2PbSO4+3Pb(NO3)2+2H2O{displaystyle {mathsf {2MnSO_{4}+5PbO_{2}+6HNO_{3}rightarrow 2HMnO_{4}+2PbSO_{4}+3Pb(NO_{3})_{2}+2H_{2}O}}}

Эта реакция используется для качественного определения Mn2+ (см. в разделе «Определение методами химического анализа»).


При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окисления. Подробное описание реакции см. в разделе «Определение методами химического анализа».
В нейтральных или кислых водных растворах ион Mn2+ образует окрашенный в бледно-розовый цвет аквакомплекс [Mn(H2O)6]2+.


Соли MnCl3, Mn2(SO4)3 неустойчивы. Гидроксиды Mn(OH)2 и Mn(OH)3 имеют основный характер, MnO(OH)2 — амфотерный. Хлорид марганца (IV) MnCl4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора:


MnO2+4HCl→MnCl2+Cl2↑+2H2O{displaystyle {mathsf {MnO_{2}+4HClrightarrow MnCl_{2}+Cl_{2}uparrow +2H_{2}O}}}

Нулевая степень окисления у марганца проявляется в соединениях с σ-донорными и π-акцепторными лигандами. Так, для марганца и известен карбонил состава Mn2(CO)10.


Известны и другие соединения марганца с σ-донорными и π-акцепторными лигандами (PF3, NO, N2, P(C5H5)3).



Изотопы |



Марганец является моноизотопным элементом — в природе существует только один устойчивый изотоп 55Mn. Все другие изотопы марганца нестабильны и радиоактивны, они получены искусственно. Известны 25 радиоактивных изотопов марганца, имеющие массовое число А в диапазоне от 44 до 70. Наиболее стабильными из них являются 53Mn (период полураспада T1/2 = 3,7 млн лет), 54Mn (T1/2 = 312,3 суток) и 52Mn (T1/2 = 5,591 суток). Преобладающей модой распада лёгких изотопов марганца (А < 55) является электронный захват (и иногда конкурирующий с ним позитронный распад) в соответствующие изотопы хрома. У тяжёлых изотопов (А > 55) основной модой распада является β-распад в соответствующие изотопы железа. Известны также 7 изомеров (метастабильных возбуждённых состояний) с периодами полураспада более 100 нс.



Применение в промышленности |



Применение в металлургии |


Марганец в виде ферромарганца применяется для «раскисления» стали при её плавке, то есть для удаления из неё кислорода. Кроме того, он связывает серу, что также улучшает свойства сталей. Введение до 12-13 % Mn в сталь (так называемая Сталь Гадфильда), иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твёрдой и сопротивляющейся износу и ударам (т. н. «наклеп»). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. В «зеркальный чугун» вводится до 20 % Mn.


В 1920-х-40х годах применение марганца позволяло выплавлять броневую сталь. В начале 1950-х годов в журнале Сталь возникла дискуссия по вопросу о возможности снижения содержания марганца в чугуне, и тем самым отказа от поддержки определённого содержания марганца в процессе мартеновской плавки, в которой вместе с В. И. Явойским и В. И. Баптизманским принял участие Е. И. Зарвин, который на основе производственных экспериментов показал нецелесообразность существовавшей технологии. Позже он показал возможность ведения мартеновского процесса на маломарганцовистом чугуне. С пуском ЗСМК началась разработка передела низкомарганцовистых чугунов в конвертерах.[5]


Сплав 83 % Cu, 13 % Mn и 4 % Ni (манганин) обладает высоким электросопротивлением, мало изменяющимся с изменением температуры. Поэтому его применяют для изготовления реостатов и пр.


Марганец вводят в бронзы и латуни.



Применение в химии |


Значительное количество диоксида марганца потребляется при производстве марганцево-цинковых гальванических элементов, MnO2 используется в таких элементах в качестве окислителя-деполяризатора.


Соединения марганца также широко используются как в тонком органическом синтезе (MnO2 и KMnO4 в качестве окислителей), так и промышленном органическом синтезе (компоненты катализаторов окисления углеводородов, например, в производстве терефталевой кислоты окислением p-ксилола, окисление парафинов в высшие жирные кислоты).


Арсенид марганца обладает гигантским магнитокалорическим эффектом, усиливающимся под давлением.


Теллурид марганца перспективный термоэлектрический материал (термо-э. д. с 500 мкВ/К).



Определение методами химического анализа |


Марганец принадлежит к пятой аналитической группе катионов.


Специфические реакции, используемые в аналитической химии для обнаружения катионов Mn2+, следующие:


1. Едкие щёлочи с солями марганца (II) дают белый осадок гидроксида марганца (II):



MnSO4+2KOH→Mn(OH)2↓+K2SO4{displaystyle {mathsf {MnSO_{4}+2KOHrightarrow Mn(OH)_{2}downarrow +K_{2}SO_{4}}}}

Mn2++2OH−Mn(OH)2↓{displaystyle {mathsf {Mn^{2+}+2OH^{-}rightarrow Mn(OH)_{2}downarrow }}}


Осадок на воздухе меняет цвет на бурый из-за окисления кислородом воздуха.


Выполнение реакции. К двум каплям раствора соли марганца добавляют две капли раствора щёлочи. Наблюдают изменение цвета осадка.


2. Пероксид водорода в присутствии щёлочи окисляет соли марганца (II) до тёмно-бурого соединения марганца (IV):



MnSO4+H2O2+2NaOH→MnO(OH)2↓+Na2SO4+H2O{displaystyle {mathsf {MnSO_{4}+H_{2}O_{2}+2NaOHrightarrow MnO(OH)_{2}downarrow +Na_{2}SO_{4}+H_{2}O}}}

Mn2++H2O2+2OH−MnO(OH)2↓+H2O{displaystyle {mathsf {Mn^{2+}+H_{2}O_{2}+2OH^{-}rightarrow MnO(OH)_{2}downarrow +H_{2}O}}}


Выполнение реакции. К двум каплям раствора соли марганца добавляют четыре капли раствора щёлочи и две капли раствора H2O2.


3. Диоксид свинца PbO2 в присутствии концентрированной азотной кислоты при нагревании окисляет Mn2+ до MnO4 с образованием марганцевой кислоты малинового цвета:



2MnSO4+5PbO2+6HNO3→2HMnO4+2PbSO4↓+3Pb(NO3)2+2H2O{displaystyle {mathsf {2MnSO_{4}+5PbO_{2}+6HNO_{3}rightarrow 2HMnO_{4}+2PbSO_{4}downarrow +3Pb(NO_{3})_{2}+2H_{2}O}}}

2Mn2++5PbO2+4H+→2MnO4−+5Pb2++2H2O{displaystyle {mathsf {2Mn^{2+}+5PbO_{2}+4H^{+}rightarrow 2MnO_{4}^{-}+5Pb^{2+}+2H_{2}O}}}


Эта реакция даёт отрицательный результат в присутствии восстановителей, например хлороводородной кислоты и её солей, так как они взаимодействуют с диоксидом свинца, а также с образовавшейся марганцевой кислотой. При больших количествах марганца провести эту реакцию не удаётся, так как избыток ионов Mn2+ восстанавливает образующуюся марганцевую кислоту HMnO4 до MnO(OH)2, и вместо малиновой окраски появляется бурый осадок. Вместо диоксида свинца для окисления Mn2+ в MnO4 могут быть использованы другие окислители, например, персульфат аммония (NH4)2S2O8 в присутствии катализатора — ионов Ag+ или висмутат натрия NaBiO3:


2MnSO4+5NaBiO3+16HNO3→2HMnO4+5Bi(NO3)3+NaNO3+2Na2SO4+7H2O{displaystyle {mathsf {2MnSO_{4}+5NaBiO_{3}+16HNO_{3}rightarrow 2HMnO_{4}+5Bi(NO_{3})_{3}+NaNO_{3}+2Na_{2}SO_{4}+7H_{2}O}}}

Выполнение реакции. В пробирку вносят стеклянным шпателем немного PbO2, а затем 5 капель концентрированной азотной кислоты HNO3 и нагревают смесь на кипящей водяной бане. В нагретую смесь добавляют 1 каплю раствора сульфата марганца (II) MnSO4 и снова нагревают 10—15 мин, встряхивая время от времени содержимое пробирки. Дают избытку диоксида свинца осесть и наблюдают малиновую окраску образовавшейся марганцевой кислоты.


При окислении висмутатом натрия реакцию проводят следующим образом. В пробирку помещают 1—2 капли раствора сульфата марганца (II) и 4 капли 6 н. HNO3, добавляют несколько крупинок висмутата натрия и встряхивают. Наблюдают появление малиновой окраски раствора.


4. Сульфид аммония (NH4)2S осаждает из раствора солей марганца сульфид марганца (II), окрашенный в телесный цвет:



MnSO4+(NH4)2S→MnS↓+(NH4)2SO4{displaystyle {mathsf {MnSO_{4}+(NH_{4})_{2}Srightarrow MnSdownarrow +(NH_{4})_{2}SO_{4}}}}

Mn2++S2−MnS↓{displaystyle {mathsf {Mn^{2+}+S^{2-}rightarrow MnSdownarrow }}}


Осадок легко растворяется в разбавленных минеральных кислотах и даже в уксусной кислоте.


Выполнение реакции. В пробирку помещают 2 капли раствора соли марганца (II) и добавляют 2 капли раствора сульфида аммония.



Биологическая роль и содержание в живых организмах |


Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желёз. Особо богаты марганцем листья свёклы — до 0,03 %, а также большие его количества содержатся в организмах рыжих муравьёв — до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца.


Избыточное накопление марганца в организме сказывается, в первую очередь, на функционировании центральной нервной системы. Это проявляется в утомляемости, сонливости, ухудшении функций памяти. Марганец является политропным ядом, поражающим также лёгкие, сердечно-сосудистую и гепатобиллиарную системы, вызывает аллергический и мутагенный эффект[источник не указан 2652 дня].



Токсичность |



Токсическая доза для человека составляет 40 мг марганца в день. Летальная доза для человека не определена.


При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главными признаками отравления марганцем у животных являются угнетение роста, понижение аппетита, нарушение метаболизма железа и изменение функции мозга.


Сообщений о случаях отравления марганцем у людей, вызванных приёмом пищи с высоким содержанием марганца, нет. В основном отравление людей наблюдается в случаях хронической ингаляции больших количеств марганца на производстве[6]. Оно проявляется в виде тяжёлых нарушений психики, включая гиперраздражительность, гипермоторику и галлюцинации — «марганцевое безумие». В дальнейшем развиваются изменения в экстрапирамидной системе, подобные болезни Паркинсона.


Чтобы развилась клиническая картина хронического отравления марганцем, обычно требуется несколько лет. Она характеризуется достаточно медленным нарастанием патологических изменений в организме, вызываемых повышенным содержанием марганца в окружающей среде (в частности, распространение эндемического зоба, не связанного с дефицитом йода).



Месторождение |


  • Усинское месторождение марганца


См. также |



  • Список стран по производству марганца

  • Отравление марганцем



Примечания |





  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047—1078. — DOI:10.1351/PAC-REP-13-03-02.


  2. 12 Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 647. — 671 с. — 100 000 экз.
    В.В. Еремин и др. Химия. 10 класс. Профильный уровень. — Москва: Дрофа, 2008. — С. 166. — 463 с. — 7000 экз. — ISBN 978-5-358-01584-5.



  3. В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах. — 1989. — 384 с.


  4. Поваренных А. С. Твёрдость минералов. — АН УССР, 1963. — С. 197—208. — 304 с.


  5. Охотский В. Б. Металлургия России на рубеже XXI века. Новокузнецк. 2005


  6. Лопина О.Д., Г. А. Аврунина Г.А., Воронцова Е.И., Прядилова Н.В., Рыжкова М.Н., Хижнякова К.И. Марганец // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1980. — Т. 13. Ленин и здравоохранение - Мединал. — 552 с. — 150 500 экз.




Ссылки |



Логотип Викисловаря
В Викисловаре есть статья «марганец»

.mw-parser-output .ts-Родственные_проекты{background:#f8f9fa;border:1px solid #a2a9b1;clear:right;float:right;font-size:90%;margin:0 0 1em 1em;padding:.5em .75em}.mw-parser-output .ts-Родственные_проекты th,.mw-parser-output .ts-Родственные_проекты td{padding:.25em 0;vertical-align:middle}.mw-parser-output .ts-Родственные_проекты td{padding-left:.5em}





  • Марганец на Webelements

  • Марганец в Популярной библиотеке химических элементов


  • Марганец в месторождениях (недоступная ссылка)











Popular posts from this blog

Усть-Каменогорск

Халкинская богословская школа

Where does the word Sparryheid come from and mean?