Астрофизика




Астрофи́зика (от др.-греч. ἀστήρ — «звезда, светило» и φυσικά — «природа») — раздел науки, находящийся на стыке астрономии и физики, изучающий физические процессы в астрономических объектах, таких, как звёзды, галактики и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.





Галактика Андромеды в ультрафиолетовых лучах.




Два представления оптического спектра: сверху «естественное» (видимое в спектроскопе), снизу — как зависимость интенсивности от длины волны. Показан комбинированный спектр излучения солнца. Отмечены линии поглощения бальмеровской серии водорода.


Астрофизика — учение о строении небесных тел. Астрофизика является составным элементом астрономии, занимающейся изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Астрофизику не следует путать с физической астрономией, каковым именем принято обозначать теорию движения небесных тел, то есть то, что также носит название небесной механики. К Астрофизике относят также исследование строения поверхности небесных тел, Солнца и планет, насколько это возможно из телескопических наблюдений над этими телами. Как пример можно привести открытие атмосферы Венеры М. В. Ломоносовым в 1761 году[1][2]. Само название астрофизики существует с 1865 года и предложено Цёлльнером. Астрофизические обсерватории существуют ещё только в очень немногих странах. Из них особенно знамениты Потсдамская обсерватория под управлением Фогеля и Медонская под управлением Жансена. В Пулкове также устроено астрофизическое отделение, во главе которого стоит Гассельберг.




Содержание






  • 1 Астроспектроскопия


  • 2 Наблюдательная астрофизика


  • 3 Теоретическая астрофизика


  • 4 Примечания


  • 5 Литература


  • 6 Ссылки





Астроспектроскопия |


Астроспектроскопия — раздел астрофизики, который состоит из приложения спектрального анализа к изучению небесных тел.




Спиральная галактика M 81





Солнечная корона во время солнечного затмения 1999 года




Внегалактическая астрономия: гравитационное линзирование. Это изображение показывает несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.


Первые исследования спектра Солнца были предприняты одним из изобретателей спектрального анализа, Кирхгофом, в 1859 г. Результатом этих исследований был рисунок солнечного спектра, из которого можно было определить уже с большой точностью химический состав солнечной атмосферы. Раньше Кирхгофа высказывались только иногда отдельные предположения о возможности анализа солнечной атмосферы посредством спектроскопа и в особенности о существовании на Солнце натрия вследствие найденной в спектре его тёмной линии D натрия. Такие предположения высказывались, напр., Фуко в Париже, Стоксом в Кембридже. Между тем ещё незадолго до этого Огюст Конт высказал в своей «Положительной философии» убеждение в невозможности когда бы то ни было узнать химический состав небесных тел, хотя уже в 1815 г. Фраунгофер знал о существовании тёмных линий в спектре Солнца и о существовании характеристических спектров у некоторых отдельных звёзд Сириуса, Капеллы, Бетельгейзе, Проциона, Поллукса. После первых исследований Кирхгофа спектральным анализом небесных тел занялись с большим усердием несколько астрофизиков, которые вскоре представили чрезвычайно обстоятельные исследования спектров Солнца и неподвижных звёзд. Ангстром изготовил чрезвычайно точный атлас солнечного спектра, Секки произвёл обозрение большого числа звёзд посредством спектроскопа и установил четыре типа звёздных спектров, Хаггинс начал ряд исследований над спектрами отдельных ярких звёзд. Область применения спектроскопа постепенно расширялась. Хаггинсу удалось наблюдать спектр некоторых туманностей и подтвердить уже неопровержимым образом предположение о существовании двух типов туманностей — звёздных, состоящих из куч звёзд, которые при достаточной оптической силе инструмента могут быть разложены на звёзды, и газообразных, действительных туманностей, относительно которых можно предполагать, что они находятся в фазе образования отдельных звёзд путём постепенного сгущения их вещества. С середины 60-х годов XIX века изучение поверхности Солнца посредством спектроскопа во время затмений и вне их вошло в состав непрерывных наблюдений, производящихся в настоящее время во многих обсерваториях. Хаггинс, Локьер в Англии, Жансен во Франции, Фогель в Германии, Такини в Италии, Гассельберг в России и др. дали обширные исследования, уяснившие строение верхних слоёв солнечной атмосферы (см. Солнце). В то же время с 1868 года по мысли Хаггинса спектроскоп был применён и к исследованию собственных движений звёзд по направлению луча зрения посредством измерения перемещений линий их спектров, которые в настоящее время также производятся систематически в Гринвичской обсерватории. Принцип Доплера, лежащий в основании этих измерений, был уже несколько раз проверен экспериментально измерениями перемещений солнечного спектра и послужил Локьеру в его измерениях к установлению его гипотезы о сложности химических элементов. Спектры комет, падающих звёзд, метеоритов, исследованные разными астрономами, а в последнее время в особенности Локьером, дали уже много весьма важных фактов в руки астроному, и в значительной степени послужили уяснению происхождения и развития звёзд и солнечной системы.
Тем не менее, время существования этой области знания не позволяет пока делать точные выводы о долговременных эволюционных изменениях химического состава материи в масштабе галактики, поскольку факторы влияния (смены поколений звёзд — выгорания термоядерного топлива) не описаны количественно.



Наблюдательная астрофизика |





Радиотелескоп РТФ-32
РАО «Зеленчукская»
Северный Кавказ


Основная часть данных в астрофизике получается по наблюдению объектов в электромагнитных лучах. Исследуются как прямые изображения, полученные на различных длинах волн, так и электромагнитные спектры принимаемого излучения.




  • Радиоастрономия изучает излучения в диапазоне длин волн от 0.1 мм до 100 м. Радиоволны испускаются, например: такими холодными объектами как межзвёздный газ и пылевые облака; Реликтовым излучением, являющимся отголоском Большого Взрыва; Пульсарами, впервые обнаруженными в микроволновом диапазоне; Далёкими радиогалактиками и квазарами. Для наблюдений в радиодиапазоне требуются телескопы очень больших размеров. Зачастую наблюдения проводятся с использованием интерферометров и сетей РСДБ.


  • Инфракрасная астрономия изучает излучение на волнах, находящихся в промежутке между радиоизлучением и видимым светом. Наблюдения в этой области спектра обычно производятся на телескопах, подобных обычным оптическим телескопам. Наблюдаемые объекты обычно холоднее звёзд: планеты, межзвёздная пыль.


  • Оптическая астрономия является старейшей областью астрофизики. На сегодняшний день основными инструментами являются телескопы с ПЗС-матрицами в качестве приёмников изображения. Так же часто производятся наблюдения с помощью спектрографов. Ограничение на наблюдения в оптическом диапазоне накладывает дрожание земной атмосферы, мешающее наблюдениям на больших телескопах. Для устранения этого эффекта и получения максимально чёткого изображения используются различные методы, такие как адаптивная оптика, спекл-интерферометрия, а также выведение телескопов в космическое пространство за пределы атмосферы. В этом диапазоне хорошо видны звёзды и планетарные туманности, что позволяет изучать в том числе их расположение и химическое строение.


  • Ультрафиолетовая астрономия, рентгеновская астрономия и гамма-астрономия(астрофизика) изучают объекты, в которых происходят процессы с образованием высокоэнергетических частиц. К таким объектам относятся двойные пульсары, чёрные дыры, магнетары и многие другие объекты. Для излучения в этой части спектра земная атмосфера является непрозрачной. Поэтому существуют два метода наблюдения — наблюдения с космических телескопов (обсерватории RXTE, Chandra и CGRO) и наблюдения черенковского эффекта в земной атмосфере (H.E.S.S., телескоп MAGIC).


Другие типы излучения также могут наблюдаться с Земли. Было создано несколько обсерваторий в попытках наблюдения гравитационных волн. Созданы нейтринные обсерватории, позволившие прямыми наблюдениями доказать наличие термоядерных реакций в центре Солнца. С помощью этих детекторов также изучались удалённые объекты, такие как сверхновая SN1987a. Исследования высокоэнергетических частиц производятся по наблюдениям их столкновений с земной атмосферой, порождающих ливни элементарных частиц.


Наблюдения также могут различаться по продолжительности. Большинство оптических наблюдений производится с выдержками порядка минут или часов. Однако, в некоторых проектах, таких как Tortora, производятся наблюдения с выдержкой менее секунды. Тогда как в других общее время экспозиции может составлять недели (например, такая выдержка использовалась при наблюдении глубоких хаббловских полей). Более того, наблюдения пульсаров могут производиться с временем экспозиции в миллисекунды, а наблюдения эволюции некоторых объектов могут занимать сотни лет, включая изучение исторических материалов.


Изучению Солнца отводится отдельное место. Из-за огромных расстояний до других звёзд, Солнце является единственной звездой, которая может быть изучена в мельчайших деталях. Изучение Солнца даёт основу для изучения других звёзд.



Теоретическая астрофизика |


Теоретическая астрофизика использует как аналитические методы, так и численное моделирование для изучения различных астрофизических явлений, построения их моделей и теорий. Подобные модели, построенные из анализа наблюдательных данных, могут быть проверены с помощью сравнения теоретических предсказаний и вновь полученных данных. Также наблюдения могут помочь в выборе одной из нескольких альтернативных теорий.


Объектом исследований теоретической астрофизики являются, например:



  • Физика межзвёздной среды


  • Эволюция звёзд и их строение.

  • Физика чёрных дыр

  • Звёздная динамика


  • Эволюция галактик

  • Крупномасштабная структура Вселенной

  • Астрофизическая гидродинамика

  • Магнитогидродинамика


  • Космология (Модель Λ{displaystyle Lambda }CDM, тёмное вещество и тёмная энергия, инфляция)



Примечания |





  1. V.Shiltsev, «Lomonosov’s Discovery of Venus Atmosphere in 1761: English Translation of Original Publication with Commentaries» (2012)


  2. V.Shiltsev, I.Nesterenko, and R.Rosenfeld, «Replicating the discovery of Venus’s atmosphere», Physics Today, Feb.2013 / Volume 66, Issue 2, p.64 (2013) Архивированная копия (неопр.) (недоступная ссылка). Проверено 15 мая 2013. Архивировано 4 июля 2013 года.




Литература |


.mw-parser-output .ts-Родственные_проекты{background:#f8f9fa;border:1px solid #a2a9b1;clear:right;float:right;font-size:90%;margin:0 0 1em 1em;padding:.5em .75em}.mw-parser-output .ts-Родственные_проекты th,.mw-parser-output .ts-Родственные_проекты td{padding:.25em 0;vertical-align:middle}.mw-parser-output .ts-Родственные_проекты td{padding-left:.5em}
















  • В. В. Иванов, Астрофизика — статья, написанная в 2004 г. для Большой российской энциклопедии (где опубликована в несколько сокращенном виде).

  • Фильченков М. Л., Копылов С. В., Евдокимов В. С. Курс общей физики: дополнительные главы.

  • Мартынов Д. Я. Курс общей астрофизики. — М.: Наука, 1988. — 640 с.



Ссылки |


  • Астрофизика // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.







Popular posts from this blog

Усть-Каменогорск

Халкинская богословская школа

Высокополье (Харьковская область)