Инерция














Классическая механика

d(mv→)dt=F→{displaystyle {frac {mathrm {d} (m{vec {v}})}{mathrm {d} t}}={vec {F}}}
Второй закон Ньютона

История…








См. также: Портал:Физика

Ине́рция (от лат. inertia — бездеятельность, синоним: инертность[1]) — свойство тела оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствие внешних воздействий[1][2], а также препятствовать изменению своей скорости (как по модулю, так и по направлению[3]) при наличии внешних сил.


Применительно к ситуации без воздействия предпочтительнее использование слова «инерция», а в иных ситуациях — «инертность».




Содержание






  • 1 Формулировка


  • 2 История


  • 3 Смежные понятия


  • 4 См. также


  • 5 Примечания


  • 6 Литература





Формулировка |


Существование инерциальных систем отсчета в классической механике постулируется первым законом Нью́тона, который также называется зако́ном ине́рции. Его классическую формулировку дал Ньютон в своей книге «Математические начала натуральной философии»:




Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.




Современная, более точная, формулировка закона:




Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.





Физическая энциклопедия[1].



Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО). Все другие системы отсчёта (например, вращающиеся или движущиеся с ускорением) называются соответственно неинерциальными.


В неинерциальных системах отсчёта закон инерции не выполняется. Тем не менее, движение тел в неинерциальных системах отсчёта можно описывать теми же уравнениями движения, что и в инерциальных, если наряду с силами, обусловленными воздействием тел друг на друга, учитывать силы инерции[4][5].



История |


Древнегреческие учёные, судя по дошедшим до нас сочинениям, размышляли о причинах совершения и прекращения движения. В «Физике» Аристотеля (IV век до н. э.) приводится такое рассуждение о движении в пустоте[6]:


.mw-parser-output .ts-Цитата-container{margin:auto;border-collapse:collapse;display:flex;justify-content:center}.mw-parser-output .ts-Цитата-quote{font-style:italic}.mw-parser-output .ts-Цитата-container cite{display:block;float:right;font-style:normal}.mw-parser-output .ts-Цитата-leftQuote,.mw-parser-output .ts-Цитата-rightQuote{width:30px;padding-right:10px}.mw-parser-output .ts-Цитата-leftQuote{vertical-align:top}.mw-parser-output .ts-Цитата-rightQuote{vertical-align:bottom}.mw-parser-output .ts-Цитата-container .ts-oq .NavFrame{padding:0.25em 0 0}




« Никто не сможет сказать, почему [тело], приведенное в движение, где-нибудь остановится, ибо почему оно скорее остановится здесь, а не там? Следовательно, ему необходимо или покоиться, или двигаться до бесконечности. »

Однако в другом труде «Механика», приписываемом Аристотелю, утверждается[7]:







« Движущееся тело останавливается, если сила, его толкающая, прекращает своё действие. »

Наблюдения действительно показывали, что тело останавливалось при прекращении действия толкающей его силы. Естественное противодействие внешних сил (трения, сопротивления воздуха и т. п.) движению толкаемого тела при этом не учитывалось. Поэтому Аристотель связывал неизменность скорости движения любого тела с неизменностью прилагаемой к нему силы.


Только через два тысячелетия Галилео Галилей (1564—1642) смог исправить эту ошибку «аристотелевской физики». В своем труде «Беседы о двух новых науках» Галилей писал[7]:







« …скорость, однажды сообщенная движущемуся телу, будет строго сохраняться, поскольку устранены внешние причины ускорения или замедления, — условие, которое обнаруживается только на горизонтальной плоскости, ибо в случае движения по наклонной плоскости вниз уже существует причина ускорения, в то время, как при движении по наклонной плоскости вверх налицо замедление; из этого следует, что движение по горизонтальной плоскости вечно »

Это суждение нельзя вывести непосредственно из эксперимента, так как невозможно исключить все внешние влияния (трение и т. п.). Поэтому, здесь Галилей впервые применил метод логического мышления, базирующийся на непосредственных наблюдениях и подобный математическому методу доказательства «от противного». Если наклон плоскости к горизонтали является причиной ускорения тела, движущегося по ней вниз, и замедления тела, движущегося по ней вверх, то при движении по горизонтальной плоскости у тела нет причин ускоряться или замедляться — и оно должно пребывать в состоянии равномерного движения или покоя.


Таким образом, Галилей просто и ясно доказал связь между силой и изменением скорости (ускорением), а не между силой и самой скоростью, как считали Аристотель и его последователи. Это открытие Галилея вошло в науку как закон инерции. Однако, Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). В современном виде закон инерции сформулировал Декарт. Ньютон включил закон инерции в свою систему законов механики как первый закон.



Смежные понятия |


Принцип относительности Галилея: во всех инерциальных системах отсчёта все механические процессы протекают одинаково (если начальные условия для всех тел одинаковы). В системе отсчёта, приведённой в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчёта (условно — «покоящейся»), все процессы протекают точно так же, как и в покоящейся системе.


Следует отметить, что понятие инерциальной системы отсчёта — абстрактная модель, то есть некий идеальный объект, рассматриваемый вместо реального объекта (другими примерами абстрактной модели служат абсолютно твёрдое тело или нерастяжимая невесомая нить). Реальные системы отсчёта всегда связаны с каким-либо объектом или объектами, и соответствие реально наблюдаемого движения тел в таких системах результатам расчётов будет неполным. В то же время точность подобной абстракции в земных условиях весьма велика и ограничивается лишь величиной искривления пространства-времени, которое было предсказано в рамках общей теории относительности (1915 год) и впервые зафиксировано в 1919 году при исследовании отклонения света в гравитационном поле Солнца.


Инертная масса — мера инертности тела в физике, показатель того, в большей или меньшей степени данное тело будет препятствовать изменению своей скорости относительно инерциальной системы отсчёта при воздействии внешних сил. Инертная масса фигурирует в выражении второго закона Ньютона, являющегося важнейшим законом классической механики.



См. также |




Файл:Инерция.webmВоспроизвести медиафайл

Видеоурок: инерция



  • Законы Ньютона

  • Сила инерции

  • Момент инерции

  • Принцип Маха

  • Механика

  • Гистерезис

  • Теория импетуса



Примечания |





  1. 123 Инерция // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.


  2. Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.


  3. Т.И.Трофимов. Физика. — Москва: "Академия", 2012.


  4. Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — С. 118—119.


  5. Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 292


  6. Физика (Аристотель)/Книга 4/Глава 8


  7. 12 Эйнштейн А., Инфельд Л. Эволюция физики. — М.: Наука, 1965. — С. 10-12.




Литература |




  • Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.


  • Спасский Б. И.. История физики. М., «Высшая школа», 1977.


  • Кокарев С. С. Три лекции о законах Ньютона. Ярославль. Сб. трудов РНОЦ Логос, вып. 1, 45-72, 2006.


Ссылки новых исследований:




  • Masreliez C. J., Motion, Inertia and Special Relativity — a Novel Perspective, Physica Scripta (2006).

  • Masreliez C. J., On the origin of inertial force, Apeiron (2006).

  • Masreliez, C J; Dynamic incremental scale transition with application to physics and cosmology, Physica Scripta (2007).









Popular posts from this blog

Усть-Каменогорск

Халкинская богословская школа

Высокополье (Харьковская область)