Can someone help
$begingroup$
Consider the geometric sequence $1, a, a^2, a^3,dots$ Suppose that the sum of two consecutive terms in the sequence gives the next term in the sequence. Find $a$.
sequences-and-series
New contributor
$endgroup$
add a comment |
$begingroup$
Consider the geometric sequence $1, a, a^2, a^3,dots$ Suppose that the sum of two consecutive terms in the sequence gives the next term in the sequence. Find $a$.
sequences-and-series
New contributor
$endgroup$
8
$begingroup$
So $1+a = a^2$ (make sure you know why!). Can you find $a$ from this?
$endgroup$
– Minus One-Twelfth
2 hours ago
1
$begingroup$
Son of Bonacci would know the answer right away.
$endgroup$
– dnqxt
2 hours ago
add a comment |
$begingroup$
Consider the geometric sequence $1, a, a^2, a^3,dots$ Suppose that the sum of two consecutive terms in the sequence gives the next term in the sequence. Find $a$.
sequences-and-series
New contributor
$endgroup$
Consider the geometric sequence $1, a, a^2, a^3,dots$ Suppose that the sum of two consecutive terms in the sequence gives the next term in the sequence. Find $a$.
sequences-and-series
sequences-and-series
New contributor
New contributor
edited 2 hours ago
Lehs
7,07931664
7,07931664
New contributor
asked 2 hours ago
lollollollol
221
221
New contributor
New contributor
8
$begingroup$
So $1+a = a^2$ (make sure you know why!). Can you find $a$ from this?
$endgroup$
– Minus One-Twelfth
2 hours ago
1
$begingroup$
Son of Bonacci would know the answer right away.
$endgroup$
– dnqxt
2 hours ago
add a comment |
8
$begingroup$
So $1+a = a^2$ (make sure you know why!). Can you find $a$ from this?
$endgroup$
– Minus One-Twelfth
2 hours ago
1
$begingroup$
Son of Bonacci would know the answer right away.
$endgroup$
– dnqxt
2 hours ago
8
8
$begingroup$
So $1+a = a^2$ (make sure you know why!). Can you find $a$ from this?
$endgroup$
– Minus One-Twelfth
2 hours ago
$begingroup$
So $1+a = a^2$ (make sure you know why!). Can you find $a$ from this?
$endgroup$
– Minus One-Twelfth
2 hours ago
1
1
$begingroup$
Son of Bonacci would know the answer right away.
$endgroup$
– dnqxt
2 hours ago
$begingroup$
Son of Bonacci would know the answer right away.
$endgroup$
– dnqxt
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$a^n + a^{n + 1} = a^{n + 2}; tag 1$
$a ne 0 Longrightarrow 1 + a = a^2 Longrightarrow a^2 - a - 1 = 0; tag 2$
$a_pm = dfrac{1 pm sqrt{(-1)^2 - 4(1)(-1)}}{2} = dfrac{1 pm sqrt 5}{2}; tag 3$
note that
$a_+ a_- = -1; ; a_+ + a_- = 1. tag 4$
$endgroup$
1
$begingroup$
In fact, $a=0$ is also a solution.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: except when we start at the beginning: $1 + 0 = 1 ne 0$!
$endgroup$
– Robert Lewis
1 hour ago
1
$begingroup$
I read the question to have one set of three consecutive terms to satisfy the requirement, so the second, third, and fourth of $1,0,0,0,0,ldots$ do. I agree it is not clear and you might require that every set of three terms does.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: yes, I see your point!
$endgroup$
– Robert Lewis
1 hour ago
add a comment |
$begingroup$
$$1+a = a^2$$
$$text{By Quadratic formula, you get } a = frac {1 pm sqrt5}{2}$$
You check that it works throughout the equation... as $a+a^2 = a^3$ and so on.. but you will find that $a^2 - a -1$ is always a factor of all equation.
Hence $a = frac {1 pm sqrt5}{2}$
$endgroup$
1
$begingroup$
The question asks if any set of three terms satisfies the requirement. If $a_n$ is the first one, you can divide by $a_n$ to get your equation, but that should be noted.
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
lollol is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167818%2fcan-someone-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$a^n + a^{n + 1} = a^{n + 2}; tag 1$
$a ne 0 Longrightarrow 1 + a = a^2 Longrightarrow a^2 - a - 1 = 0; tag 2$
$a_pm = dfrac{1 pm sqrt{(-1)^2 - 4(1)(-1)}}{2} = dfrac{1 pm sqrt 5}{2}; tag 3$
note that
$a_+ a_- = -1; ; a_+ + a_- = 1. tag 4$
$endgroup$
1
$begingroup$
In fact, $a=0$ is also a solution.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: except when we start at the beginning: $1 + 0 = 1 ne 0$!
$endgroup$
– Robert Lewis
1 hour ago
1
$begingroup$
I read the question to have one set of three consecutive terms to satisfy the requirement, so the second, third, and fourth of $1,0,0,0,0,ldots$ do. I agree it is not clear and you might require that every set of three terms does.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: yes, I see your point!
$endgroup$
– Robert Lewis
1 hour ago
add a comment |
$begingroup$
$a^n + a^{n + 1} = a^{n + 2}; tag 1$
$a ne 0 Longrightarrow 1 + a = a^2 Longrightarrow a^2 - a - 1 = 0; tag 2$
$a_pm = dfrac{1 pm sqrt{(-1)^2 - 4(1)(-1)}}{2} = dfrac{1 pm sqrt 5}{2}; tag 3$
note that
$a_+ a_- = -1; ; a_+ + a_- = 1. tag 4$
$endgroup$
1
$begingroup$
In fact, $a=0$ is also a solution.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: except when we start at the beginning: $1 + 0 = 1 ne 0$!
$endgroup$
– Robert Lewis
1 hour ago
1
$begingroup$
I read the question to have one set of three consecutive terms to satisfy the requirement, so the second, third, and fourth of $1,0,0,0,0,ldots$ do. I agree it is not clear and you might require that every set of three terms does.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: yes, I see your point!
$endgroup$
– Robert Lewis
1 hour ago
add a comment |
$begingroup$
$a^n + a^{n + 1} = a^{n + 2}; tag 1$
$a ne 0 Longrightarrow 1 + a = a^2 Longrightarrow a^2 - a - 1 = 0; tag 2$
$a_pm = dfrac{1 pm sqrt{(-1)^2 - 4(1)(-1)}}{2} = dfrac{1 pm sqrt 5}{2}; tag 3$
note that
$a_+ a_- = -1; ; a_+ + a_- = 1. tag 4$
$endgroup$
$a^n + a^{n + 1} = a^{n + 2}; tag 1$
$a ne 0 Longrightarrow 1 + a = a^2 Longrightarrow a^2 - a - 1 = 0; tag 2$
$a_pm = dfrac{1 pm sqrt{(-1)^2 - 4(1)(-1)}}{2} = dfrac{1 pm sqrt 5}{2}; tag 3$
note that
$a_+ a_- = -1; ; a_+ + a_- = 1. tag 4$
answered 1 hour ago
Robert LewisRobert Lewis
48.5k23167
48.5k23167
1
$begingroup$
In fact, $a=0$ is also a solution.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: except when we start at the beginning: $1 + 0 = 1 ne 0$!
$endgroup$
– Robert Lewis
1 hour ago
1
$begingroup$
I read the question to have one set of three consecutive terms to satisfy the requirement, so the second, third, and fourth of $1,0,0,0,0,ldots$ do. I agree it is not clear and you might require that every set of three terms does.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: yes, I see your point!
$endgroup$
– Robert Lewis
1 hour ago
add a comment |
1
$begingroup$
In fact, $a=0$ is also a solution.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: except when we start at the beginning: $1 + 0 = 1 ne 0$!
$endgroup$
– Robert Lewis
1 hour ago
1
$begingroup$
I read the question to have one set of three consecutive terms to satisfy the requirement, so the second, third, and fourth of $1,0,0,0,0,ldots$ do. I agree it is not clear and you might require that every set of three terms does.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: yes, I see your point!
$endgroup$
– Robert Lewis
1 hour ago
1
1
$begingroup$
In fact, $a=0$ is also a solution.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
In fact, $a=0$ is also a solution.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: except when we start at the beginning: $1 + 0 = 1 ne 0$!
$endgroup$
– Robert Lewis
1 hour ago
$begingroup$
@RossMillikan: except when we start at the beginning: $1 + 0 = 1 ne 0$!
$endgroup$
– Robert Lewis
1 hour ago
1
1
$begingroup$
I read the question to have one set of three consecutive terms to satisfy the requirement, so the second, third, and fourth of $1,0,0,0,0,ldots$ do. I agree it is not clear and you might require that every set of three terms does.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
I read the question to have one set of three consecutive terms to satisfy the requirement, so the second, third, and fourth of $1,0,0,0,0,ldots$ do. I agree it is not clear and you might require that every set of three terms does.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
@RossMillikan: yes, I see your point!
$endgroup$
– Robert Lewis
1 hour ago
$begingroup$
@RossMillikan: yes, I see your point!
$endgroup$
– Robert Lewis
1 hour ago
add a comment |
$begingroup$
$$1+a = a^2$$
$$text{By Quadratic formula, you get } a = frac {1 pm sqrt5}{2}$$
You check that it works throughout the equation... as $a+a^2 = a^3$ and so on.. but you will find that $a^2 - a -1$ is always a factor of all equation.
Hence $a = frac {1 pm sqrt5}{2}$
$endgroup$
1
$begingroup$
The question asks if any set of three terms satisfies the requirement. If $a_n$ is the first one, you can divide by $a_n$ to get your equation, but that should be noted.
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
$begingroup$
$$1+a = a^2$$
$$text{By Quadratic formula, you get } a = frac {1 pm sqrt5}{2}$$
You check that it works throughout the equation... as $a+a^2 = a^3$ and so on.. but you will find that $a^2 - a -1$ is always a factor of all equation.
Hence $a = frac {1 pm sqrt5}{2}$
$endgroup$
1
$begingroup$
The question asks if any set of three terms satisfies the requirement. If $a_n$ is the first one, you can divide by $a_n$ to get your equation, but that should be noted.
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
$begingroup$
$$1+a = a^2$$
$$text{By Quadratic formula, you get } a = frac {1 pm sqrt5}{2}$$
You check that it works throughout the equation... as $a+a^2 = a^3$ and so on.. but you will find that $a^2 - a -1$ is always a factor of all equation.
Hence $a = frac {1 pm sqrt5}{2}$
$endgroup$
$$1+a = a^2$$
$$text{By Quadratic formula, you get } a = frac {1 pm sqrt5}{2}$$
You check that it works throughout the equation... as $a+a^2 = a^3$ and so on.. but you will find that $a^2 - a -1$ is always a factor of all equation.
Hence $a = frac {1 pm sqrt5}{2}$
answered 1 hour ago
rashrash
595116
595116
1
$begingroup$
The question asks if any set of three terms satisfies the requirement. If $a_n$ is the first one, you can divide by $a_n$ to get your equation, but that should be noted.
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
1
$begingroup$
The question asks if any set of three terms satisfies the requirement. If $a_n$ is the first one, you can divide by $a_n$ to get your equation, but that should be noted.
$endgroup$
– Ross Millikan
1 hour ago
1
1
$begingroup$
The question asks if any set of three terms satisfies the requirement. If $a_n$ is the first one, you can divide by $a_n$ to get your equation, but that should be noted.
$endgroup$
– Ross Millikan
1 hour ago
$begingroup$
The question asks if any set of three terms satisfies the requirement. If $a_n$ is the first one, you can divide by $a_n$ to get your equation, but that should be noted.
$endgroup$
– Ross Millikan
1 hour ago
add a comment |
lollol is a new contributor. Be nice, and check out our Code of Conduct.
lollol is a new contributor. Be nice, and check out our Code of Conduct.
lollol is a new contributor. Be nice, and check out our Code of Conduct.
lollol is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167818%2fcan-someone-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
8
$begingroup$
So $1+a = a^2$ (make sure you know why!). Can you find $a$ from this?
$endgroup$
– Minus One-Twelfth
2 hours ago
1
$begingroup$
Son of Bonacci would know the answer right away.
$endgroup$
– dnqxt
2 hours ago