How to calculate the two limits?
$begingroup$
I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$
For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.
For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?
limits
$endgroup$
add a comment |
$begingroup$
I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$
For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.
For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?
limits
$endgroup$
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago
add a comment |
$begingroup$
I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$
For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.
For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?
limits
$endgroup$
I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$
For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.
For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?
limits
limits
edited 1 hour ago
lanse7pty
asked 2 hours ago
lanse7ptylanse7pty
1,8411823
1,8411823
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago
add a comment |
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$
$endgroup$
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
$$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
$$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
$$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached
$endgroup$
add a comment |
$begingroup$
I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.
$endgroup$
add a comment |
$begingroup$
You can solve the first one using
- $arctan x + operatorname{arccot}x = frac{pi}{2}$
- $lim_{yto 0}(1-y)^{1/y} = e^{-1}$
- $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$
begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
& stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
& stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
end{eqnarray*}
The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider
$frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$
$endgroup$
add a comment |
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$
$endgroup$
add a comment |
$begingroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$
$endgroup$
Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$
edited 1 hour ago
answered 2 hours ago
Paras KhoslaParas Khosla
2,736423
2,736423
add a comment |
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
$$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
$$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
$$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached
$endgroup$
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
$$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
$$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
$$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached
$endgroup$
add a comment |
$begingroup$
Without L'Hospital
$$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
$$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
$$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
$$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached
$endgroup$
Without L'Hospital
$$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$
Now, by Taylor for large values of $x$
$$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
$$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
$$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
$$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached
answered 1 hour ago
Claude LeiboviciClaude Leibovici
125k1158136
125k1158136
add a comment |
add a comment |
$begingroup$
I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.
$endgroup$
add a comment |
$begingroup$
I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.
$endgroup$
add a comment |
$begingroup$
I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.
$endgroup$
I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.
answered 2 hours ago
AdmuthAdmuth
385
385
add a comment |
add a comment |
$begingroup$
You can solve the first one using
- $arctan x + operatorname{arccot}x = frac{pi}{2}$
- $lim_{yto 0}(1-y)^{1/y} = e^{-1}$
- $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$
begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
& stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
& stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
end{eqnarray*}
The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider
$frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.
$endgroup$
add a comment |
$begingroup$
You can solve the first one using
- $arctan x + operatorname{arccot}x = frac{pi}{2}$
- $lim_{yto 0}(1-y)^{1/y} = e^{-1}$
- $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$
begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
& stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
& stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
end{eqnarray*}
The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider
$frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.
$endgroup$
add a comment |
$begingroup$
You can solve the first one using
- $arctan x + operatorname{arccot}x = frac{pi}{2}$
- $lim_{yto 0}(1-y)^{1/y} = e^{-1}$
- $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$
begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
& stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
& stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
end{eqnarray*}
The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider
$frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.
$endgroup$
You can solve the first one using
- $arctan x + operatorname{arccot}x = frac{pi}{2}$
- $lim_{yto 0}(1-y)^{1/y} = e^{-1}$
- $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$
begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
& stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
& stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
end{eqnarray*}
The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider
$frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.
answered 11 mins ago
trancelocationtrancelocation
13.4k1827
13.4k1827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago