Eigenvalues of $2$ symmetric $4times 4$ matrices: why is one negative of the other?












2












$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    30 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    27 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    14 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    13 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    11 mins ago
















2












$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    30 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    27 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    14 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    13 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    11 mins ago














2












2








2


1



$begingroup$


Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.










share|cite|improve this question











$endgroup$




Consider the following symmetric matrix:



$$
M_0 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & 4 & 3 \
2 & 4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



and a very similar matrix:



$$
M_1 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & -4 & 3 \
2 & -4 & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



To my surprise, the eigenspectrum of $M_0$ and $(-M_1)$ are the same! Why would this be the case?



I also tried playing around with the values a little; for example, if the center block is $begin{pmatrix}1 & pm 4 \ pm 4 & 1end{pmatrix}$ instead, then they do not share the same eigenvalues.





Context: I was considering the Hermitian matrix of this form ($M_2$ below) and noted that this has the same property as the matrix $M_0$ from above. Thus, presumably, it has nothing to do with the fact that the middle block is complex.



$$
M_2 =
begin{pmatrix}
0 & 1 & 2 & 0 \
1 & 0 & e^{ix} & 3 \
2 & e^{-ix} & 0 & 1 \
0 & 3 & 1 & 0
end{pmatrix}
$$



ps. I will accept any answer which explains the phenomenon between the real matrices. I think that would give a hint as to why $M_2$ / Hermitian matrices have the same property.



Thanks.







linear-algebra matrices eigenvalues-eigenvectors symmetric-matrices






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 min ago









YuiTo Cheng

2,2734937




2,2734937










asked 1 hour ago









TroyTroy

4231519




4231519












  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    30 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    27 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    14 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    13 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    11 mins ago


















  • $begingroup$
    It's because of all the conveniently placed zeroes.
    $endgroup$
    – M. Vinay
    30 mins ago










  • $begingroup$
    @M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
    $endgroup$
    – Troy
    27 mins ago






  • 1




    $begingroup$
    In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
    $endgroup$
    – M. Vinay
    14 mins ago






  • 2




    $begingroup$
    In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
    $endgroup$
    – leonbloy
    13 mins ago










  • $begingroup$
    @leonbloy that certainly narrows down the search for me, thanks for the input!
    $endgroup$
    – Troy
    11 mins ago
















$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago




$begingroup$
It's because of all the conveniently placed zeroes.
$endgroup$
– M. Vinay
30 mins ago












$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
27 mins ago




$begingroup$
@M.Vinay Yes, seems that way. Is there a name for such matrices or any property sticking out to you right now which would explain why this is true for symmetric matrices of this kind?
$endgroup$
– Troy
27 mins ago




1




1




$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago




$begingroup$
In my answer as currently written, I've shown that this holds for a slightly more general case (the matrix doesn't have to be symmetric/Hermitian, and may be real or complex). But I'd like to generalise still further, to higher orders. And also try to find a more big-picture explanation, as you say.
$endgroup$
– M. Vinay
14 mins ago




2




2




$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
13 mins ago




$begingroup$
In case this helps: this would be "hollow" (zeroes at the diagonal) "pentadiagonal" or "band" symmetric matrix.
$endgroup$
– leonbloy
13 mins ago












$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
11 mins ago




$begingroup$
@leonbloy that certainly narrows down the search for me, thanks for the input!
$endgroup$
– Troy
11 mins ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&-_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite









$endgroup$









  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    5 mins ago



















2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    14 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    11 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    8 mins ago



















1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    18 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    15 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    11 mins ago












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-2-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&-_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite









$endgroup$









  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    5 mins ago
















4












$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&-_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite









$endgroup$









  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    5 mins ago














4












4








4





$begingroup$

$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&-_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.






share|cite









$endgroup$



$$-M_1=D^{-1}M_0D$$
where $D=D^{-1}$ is the diagonal matrix with diagonal entries $(-1,1,1,-1)$.
Therefore $M_0$ and $-M_1$ are conjugate, and have the same spectrum. This works
because of the zeroes in the corners of $M_0$. In general,
$$pmatrix{a_{11}&a_{12}&a_{13}&a_{14}\
a_{21}&a_{22}&a_{23}&a_{24}\
a_{31}&a_{32}&a_{33}&a_{34}\
a_{41}&a_{42}&a_{43}&a_{44}}$$

and
$$-pmatrix{-a_{11}&a_{12}&a_{13}&-a_{14}\
a_{21}&-a_{22}&-a_{23}&a_{24}\
a_{31}&-a_{32}&-a_{33}&a_{34}\
-a_{41}&-_{42}&a_{43}&-a_{44}}$$

are conjugate, for precisely the same reason.







share|cite












share|cite



share|cite










answered 8 mins ago









Lord Shark the UnknownLord Shark the Unknown

108k1162135




108k1162135








  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    5 mins ago














  • 1




    $begingroup$
    Of course, signature matrix. This is the answer.
    $endgroup$
    – M. Vinay
    5 mins ago








1




1




$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
5 mins ago




$begingroup$
Of course, signature matrix. This is the answer.
$endgroup$
– M. Vinay
5 mins ago











2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    14 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    11 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    8 mins ago
















2












$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    14 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    11 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    8 mins ago














2












2








2





$begingroup$

This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.






share|cite|improve this answer











$endgroup$



This is happening because of the somewhat special pattern of zeroes in this matrix. Edit: No it's not. It has everything to do with signature matrices instead, as shown in the other answer.



Let $$M_1 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & b_3 & b_4\c_1 & c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}, quad M_2 = begin{bmatrix}0 & a_2 & a_3 & 0\b_1 & 0 & -b_3 & b_4\c_1 & -c_2 & 0 & c_4\0 & d_2 & d_3 & 0end{bmatrix}$$



Let $(lambda, x)$ be an eigenvalue-eigenvector pair of $M_1$, where
$x = begin{bmatrix}x_1 & x_2 & x_3 & x_4end{bmatrix}^T$.
Then we can show that
$begin{bmatrix}x_1 & -x_2 & -x_3 & x_4end{bmatrix}^T$
is an eigenvector corresponding to eigenvalue $-lambda$ for $M_2$.



For,
begin{align*}
a_2 x_2 + a_3 x_3 = lambda x_1 & implies a_2 (-x_2) + a_3(-x_3) = -lambda x_1\
b_1 x_1 + b_3 x_3 + b_4 x_4 = lambda x_2 & implies b_1 x_1 - b_3(-x_3) + b_4x_4 = (-lambda)(-x_2).
end{align*}

And the cases of the third and fourth rows are obviously similar.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 mins ago

























answered 17 mins ago









M. VinayM. Vinay

7,33322136




7,33322136












  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    14 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    11 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    8 mins ago


















  • $begingroup$
    oh this is promising. let me mull on this a little before I accept. thanks!
    $endgroup$
    – Troy
    14 mins ago










  • $begingroup$
    The would imply that the property has no obvious generalization for larger sizes, no?
    $endgroup$
    – leonbloy
    11 mins ago










  • $begingroup$
    @leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
    $endgroup$
    – M. Vinay
    8 mins ago
















$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago




$begingroup$
oh this is promising. let me mull on this a little before I accept. thanks!
$endgroup$
– Troy
14 mins ago












$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago




$begingroup$
The would imply that the property has no obvious generalization for larger sizes, no?
$endgroup$
– leonbloy
11 mins ago












$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
8 mins ago




$begingroup$
@leonbloy I think it can be done with careful placement of zeroes, but I don't know if those generalisations would be naturally interesting or too contrived. Probably the latter.
$endgroup$
– M. Vinay
8 mins ago











1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    18 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    15 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    11 mins ago
















1












$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    18 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    15 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    11 mins ago














1












1








1





$begingroup$

I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.






share|cite|improve this answer











$endgroup$



I'm not sure if what follows is the type of thing you're looking for, but maybe you'll find this useful.



Consider the matrix
$$
M_a =
left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a & 3 \
2 & a & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

The characteristic polynomials of $M_a$ and $M_{-a}$ are
begin{align*}
chi_{M_a}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a}}(t)
&= t^{4} - left(a^{2} + 15right) t^{2} + 10 , a t + 25
end{align*}

Now, note that $lambda$ is an eigenvalue of $M_a$ if and only if
begin{align*}
0
&= chi_{M_a}(t) \
&= {lambda}^{4} - {left(a^{2} + 15right)} {lambda}^{2} - 10 , a {lambda} + 25\
&= (-lambda)^{4} - {left(a^{2} + 15right)} (-lambda)^{2} + 10 , a (-lambda) + 25 \
&= chi_{M_{-a}}(-lambda)
end{align*}

This proves that $M_{a}$ and $M_{-a}$ have eigenvalues related by negation.



Now, suppose that $M$ instead takes the form
$$
M_{a+bi}=left[begin{array}{rrrr}
0 & 1 & 2 & 0 \
1 & 0 & a + i , b & 3 \
2 & a - i , b & 0 & 1 \
0 & 3 & 1 & 0
end{array}right]
$$

In this case, the characteristic polynomials of $M_{a+bi}$ and $M_{-a+bi}$ are
begin{align*}
chi_{M_{a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} - 10 , a t + 25 \
chi_{M_{-a+bi}}(t)
&= t^{4} + left(-a^{2} - b^{2} - 15right) t^{2} + 10 , a t + 25
end{align*}

A similiar argument then shows that $M_{a+bi}$ and $M_{-a+bi}$ have eigenvalues related by negation.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 16 mins ago

























answered 26 mins ago









Brian FitzpatrickBrian Fitzpatrick

21.8k42959




21.8k42959












  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    18 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    15 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    11 mins ago


















  • $begingroup$
    thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
    $endgroup$
    – Troy
    18 mins ago










  • $begingroup$
    This does not explain if the property depends on having those non-zero elements.
    $endgroup$
    – leonbloy
    15 mins ago










  • $begingroup$
    @leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
    $endgroup$
    – Brian Fitzpatrick
    11 mins ago
















$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago




$begingroup$
thanks for the attempt; yes this is a tad too "high-level" for my use-case -- I need a slightly more general/abstracted explanation. +1 nonetheless.
$endgroup$
– Troy
18 mins ago












$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago




$begingroup$
This does not explain if the property depends on having those non-zero elements.
$endgroup$
– leonbloy
15 mins ago












$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago




$begingroup$
@leonbloy I mean, if someone wants to edit the question so that it is more rigorously posed, then we can take a stab at it. As it stands, it's unclear what's actually being asked here.
$endgroup$
– Brian Fitzpatrick
11 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177640%2feigenvalues-of-2-symmetric-4-times-4-matrices-why-is-one-negative-of-the-ot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Усть-Каменогорск

Халкинская богословская школа

Высокополье (Харьковская область)